

Journal of All Physics Research and Applications

Engineering of Microbial Garbage Treatment Plants

Satoshi Matsuda

Department of Applied Chemistry and Biochemical Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan

*Corresponding author:

Satoshi Matsuda, Department of Applied Chemistry and Biochemical Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan.

Received: February 01, 2025; Accepted: February 03, 2025; Published: February 10, 2025

ABSTRACT

The design and operation of composting and/or garbage treatment plant has been carried out mainly based on empirically obtained data in many cases, which caused various troubles such as generation of bad smells and low performance in decomposing organic waste. This study intends to establish a method of design and operation of this kind of plant on the basis of chemical engineering aspects such as material and heat (enthalpy) balance, kinetic analysis of reaction and/or mass transfer rate, and various equilibrium relations. The major operating factors considered here are as follows: the rate of aeration, the control of temperature and moisture content in the reactor, pH, mixing conditions, organic loading to the reactor, and others.

Keywords: Microbial Garbage Treatment, Composting Engineering, Aeration in Composting.

Introduction

The total amount of food waste in Japan is about 17.1 million tons (Mt) from the total input (food) of 84.4 Mt, in which 10.7 Mt is discharged from homes and 6.4 Mt is from business activities. This amount corresponds to 22.2% of total non-industrial waste of 48 Mt. About 13 Mt of food waste is incinerated and disposed; only about 4 Mt is recycled (mainly the wastes from business activities), which causes many troubles and difficulties in treating and disposing of refuse. Thus, effective recycling and use of food waste as a biomass resource has a large significance in our society.

Although there are many options for the treatment of garbage (food waste), each option has its own weak point. Among the many possible methods, a microbial decomposition type of garbage treatment system is considered to be one of the most environmentally-friendly options [1]. In the previous study, the author proposed a smallscale static-type garbage treatment system for household use (input: 0.6 to 0.8 kg-garbage per day). The system has a simple structure but shows quite an excellent performance garbage treatment by microbial decomposition with little generation of bad smell, as well as only a small consumption of electricity [2]. On the other hand, this study

focused on large-scale (input: several tons of garbage per day) treatment plants. Since composting plants are one of the biochemical reaction processes, the design and operation should be accomplished in terms of chemical engineering aspects. Thus, the purpose of this study is to establish a methodology of the large-scale garbage treatment plants using the approach of chemical engineering.

Understanding the Problems

The basic principle of the operation of garbage treatment plant is similar to that of composting plants, in which aerobic microbes play a key role in the decomposition of garbage. Composting plants of organic wastes such as cattle manure have a long history, but the operating conditions have been determined on an empirical basis [1]. This situation has been long continued and there has been little progress so far into the methodology of the design or the determining the operating condition of garbage treatment plants [3]. Recently in Japan, large scale garbage treatment plants have often suffered from various troubles, mainly generation of bad smell. This is probably because the design and operation of the plants has been carried out mainly based on empirically obtained data in many cases. The essential reason of this situation would be that the microbial garbage treatment system is a "complex system",

Citation: Satoshi Matsuda (2025) Engineering of Microbial Garbage Treatment Plants. J All Phy Res Appli 1: 1-5.

in which many factors interact in diverse ways. For instance, temperatures as well as moisture content in the reactor are both very important factors dominating the microbial activity, and act as a cause while at the same time as a result of microbial decomposition process. For example, if temperatures rise, activity of microorganisms generally accelerate causing a greater heat generation by aerobic decomposition of garbage, which in turn pushes the temperature up and evaporation of water in the garbage increases, affecting the moisture content in the reactor, which brings about a positive or negative effect on the activity of microorganisms. Other factors act in a similar manner. The considerations of the optimal design and operation of garbage treatment as well as their interrelations are summarized as follows:

The example of the factors involved in the operation and the treatment results in the composting plants.

Reactor	Operating	Internal	<u>Treatment</u>
	<u>Factor</u>	Condition	<u>results</u>
shape and size aeration temp. control mixing system bulking agent recycled residue accelerator for microbes	Temperature moisture content mixing (time, intensity) organic loading garbage property	Temperature moisture content density viscosity pH ORP microorganisms	reduction rate (weight and volume) smell generation

This situation would be the major reason why the design and operation of the composting and garbage treatment plants has long depended on skills and experiences of operators, which would be a kind of "fuzzy control system" using a high level of human knowledge. However, the operating factors should be determined on an engineering basis, even though the situation is so complicated, in order to achieve a stable operation regardless of the skills of the operators. A methodology for determining the amount of aeration is discussed as the first step in this study.

Aeration

There are three major purposes of aeration in the composting and garbage treating process:

- a) Removal of the water generated in the garbage decomposition process.
- b) Oxygen supply to the oxidation reaction of organic contents in the garbage.
- c) Controlling of the temperature in the reactor.

Airflow Required for the Removal of Water

The amount of airflow required to fulfill the above demands can be estimated using the model calculation as follows: Firstly, the amount of water vaporized should be determined.

Assumption (1):

Basis of calculation: 1kg of a model garbage sample, moisture content = 80%, decomposition rate of the organic contents (dry basis) = 70%, moisture content of the product = 40%, the elemental composition of the dry organic contents: $\rm C_{24}H_{40}O_{10}$ (based on an actual sample analysis).

In this case, the complete oxidation of the organics results in $1056(=24\times44)$ grams of CO_2 and $360(=40/2\times18)$ grams of H_2O (metabolic water) from 488 grams of dry organics.

Before After

Moisture $800g \ 60(1 - 0.4)/(1 - 0.6) = 40g$ Dry Matter $200g \ 200(1 - 0.7) = 60g$ thus, Decomposition of Dry Matter = 200 - 60 = 140gThe amount of water evaporation $= 760(= 800 - 40) + 140 \times 100$

In this case, the evaporated water consists of 760g of liquid water and 105g of metabolic water, meaning that main part is liquid water but metabolic water is not negligible.

Assumption (2):

360/488 = 863g/ kg-wet garbage.

Input air condition: saturated humidity of air at $20^{\circ}\text{C} = 0.0147$ kg-water/kg-dry air (d.a.), if relative humidity = 40%, absolute humidity of air at the input = (0.0147)(0.4) = 0.00588kg-w/kg-d.a. Output air condition: saturated humidity of air at $60^{\circ}\text{C} = 0.1522$ kg-w/kg-d.a., if the output air is saturated with water vapor, the absolute humidity of the air at the output = 0.1522 kg-w/kg-d.a., then the amount of air required for the removal of the vaporized water V can be estimated as follows:

863g-water = Vm3-d.a. \times 1.29kg-d.a./m³-d.a. \times (152.2 - 5.88) g-water/kg-d.a.

thus, $V = 863/(1.29)(146.32) = 4.57 \text{m}^3$.

This is the minimum required amount of air to remove water. If the garbage input is once a day, the decomposition process should take one day, then, the air flow rate = $4.57 \text{m}^3/1$ day/kg-wet garbage = 190 L-air/hr/kg-wet garbage. If organic loading to the reactor is 40 kg-wet garbage/m³-reactor, the air flow should be (190) (40)/(60) = 127 L-air /min./m³-reactor. This value is generally consistent with the value shown in a design manual of livestock manure composting facilities, more than 100 L-air /min./m³-reactor when the height of compost heap is higher than 1 m [4].

The absolute humidity of air H is a function of total air pressure P and partial pressure of water vapor p as follows:

$$H = (18/29) \times p/(P - p) (1)$$

 $p = \psi \times ps (2)$

where ψ is relative humidity [-], and ps is the partial pressure of water saturated vapor, which is a function of t as follows:

log ps = $7.06 + 1650/\{46.8 - (273.15 + t)\}$ (3) Antoine Equation where t is the temperature of water vapor [°C].

Thus, the value of H is a function of ψ and t if the total pressure of air P is constant, meaning that air flow required for the removal of water varies with the conditions of input/output air, and the input condition depends on season and weather.

Airflow Required for the Supply of Oxygen

The amount of air flow required for the supply of oxygen can be calculated from the oxygen demand as follows: from the elemental composition of dry organic contents assumed, the oxygen necessary for complete oxidation of organic compounds should be 24(for 24C) + 10 (for 40/2 H2) = 34mol-O2 per 488 grams of dry organics. Since the decomposition rate of organic

contents (dry basis) was assumed to be 70%, the net O_2 demand is (34)(0.7) = 23.8 mol-O2, corresponding to 23.8/0.21mol-d.a. \times 22.4L/mol-d.a. \times 1/1000m3/L = 2.54 m³.

Thus, the air required for oxygen supply is about half of the minimum amount required for water vapor removal (4.57 m³). Generally, the demand of air for oxygen supply is smaller than that of water vapor removal, suggesting that the oxygen demand can be automatically fulfilled if the amount of air flow is larger than that required to remove water. Note, however, that whether or not air is uniformly distributed in the reactor is another problem, which is very important to maintain aerobic condition in the reactor. If air is not distributed uniformly, e.g. a bypass of airflow is formed, then anaerobic portion occurs even if the amount of air itself is sufficient, which is a main cause of the generation of bad smells. In such a situation, mixing operations play an important role. This problem will be discussed in the later sections.

Airflow Required for Controlling Temperature

The amount of air flow required for the temperature control can be estimated by calculation of heat balance as follows:

Assumption (3):


Low combustion heat of dry matter = 4200kcal/kg-dry, then the heat generation by the oxidation of decomposed dry matter 140g is $(4200 \times 0.140 =) 588$ kcal. The heat of evaporation of water 863g is $(540kcal/kg-water \times 0.863 =) 466kcal$, which is 79% of the heat generation, meaning that the major part of the heat generated by the decomposition of garbage would be consumed by the evaporation of water. If a steady state is maintained, the rest of the heat generated would be utilized by the rise in the temperature in both phases of solid (garbage residue) and gas (air and water vapor) and heat loss. If the temperature difference is 40 degrees (output 60°C-input 20°C), and the heat capacity of dry air between 0 to 70 °C is assumed to be 0.24 kcal/(kg K), the heat needed for rising temperature of $4.57m^3$ air is $4.57m^3 \times 1.29$ $kg/m^3 \times 0.24kcal/(kg K) \times 40K = 56.6kcal$, which is about half of the rest heat (588 - 466 = 122kcal). This sensible heat is about 1/10 of heat generation (588 kcal), meaning that a very large amount of air would be required if there happens to be a need to cool the garbage decomposition process only by aeration since the heat capacity of air is very small.

Controlling of Moisture Content

The moisture content in the garbage treating system is one of the most important operating factors, which affects both aeration efficiency and activity of microorganisms. In the case of a high moisture content of 70% or more in the system, the aeration efficiency would tend to reduce and result in an increase of anaerobic portion in the reactor, which in turn would derive a bad smell. This discussion is supported by the following experimental results [5]: The pressure drops across a column (0.29 m in diameter, 2.0 m in height) filled with leaf mold and compost were measured under various conditions of moisture content and airflow rate. Figure 1 is an example of the results; In the case of leaf mold, there was a peak observed in the pressure drop around 55% of moisture content, suggesting that there is a best condition for uniform airflow distribution at a proper moisture content.

After the best condition, the pressure drop decreased with the moisture content, indicating that there occurred a bypass of airflow which caused a non-uniform aeration. On the other side, the pressure drop decreased monotonously along the moisture content in the case of compost, suggesting that the best moisture content for aeration was less than 45% and uniform aeration was highly inhibited over 55% of moisture content, which may bring anaerobic condition in the compost layer. Thus, the moisture content in the reactor will strongly affect the efficiency of the aeration with varying widely with the property of the content of the reactor (=compost layer).

The activity of microorganisms is almost constant between 40 to 60% of moisture content, optimum range; thus, the moisture content should be controlled within this range by aeration and moisture adjustment of the input substrate (garbage and material for microbial beds). Since there seems to be no suitable remote sensing of moisture in the reactor with high accuracy and reliability so far, the development of a good moisture monitor without sampling or touching would have a great significance.

Figure 1: Effect of moisture content on pressure drop in leaf mold (left) and compost (right).

The parameter is the height from the bottom of the column (0.3 m to 1.5 m).

Other Factors

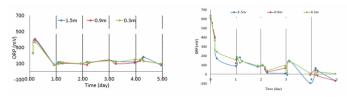
The other major important factors for operation were mixing, organic loading, pH, and others.

Mixing

The purpose of mixing is to maintain a homogeneous condition in the reactor as well as to improve an efficiency of aeration, and to prevent the reactor from falling into anaerobic conditions. But too intense mixing would bring about harmful effect on the garbage decomposition process by excess loss of heat and moisture in the reactor. Thus, the frequency and intensity of mixing is an important consideration, but is very difficult to discuss on a basis of engineering, because mixing operation of solid mixture is much more complicated than that of continuous fluid, for which equation of continuity and Navier-Stokes equations can be applied. Also, the density as well as viscosity of the solid mixture would be changed according to moisture content, temperature and the condition of microbial ecosystem in the reactor. Since there are so many agitation methods of solid mixture, it is an important technological problem to select the most suitable mixing system although there is no established method to estimate an effectiveness of mixing quantitatively.

Organic Loading

An organic loading to the reactor is defined as an amount of garbage input per unit volume of the reactor per unit time (usually one day). This operating parameter is also very important for the stable operation of the plants. According to the results in the authors' lab, a moderate organic loading would be around 40 to 50kg-wet garbage/day/m3-reactor. If the amount of garbage input is too large, several undesirable symptoms occur, such as low performance of garbage decomposition, the creation of bad smells, drops in pH and temperature, and decreases of the total number of microbes, which is called a state of "overloading". Although the overloading phenomenon is generally observed in many organic waste-treating processes using microorganisms such as activated sludge and methane fermentation, a detailed mechanism of overloading has not yet been clarified because this phenomenon seems to have a large degree of complication. The analysis of the overloading phenomenon in garbage decomposition is currently in progress in the authors' lab.


C/N Ratio

Although C/N ratio is often regarded as an important factor of composting, the author does not agree with this opinion. First, the definition of C/N is not always clear: "C" means either Total, Organic or Inorganic carbon, who's chemical and/or biological meaning is different. "N" is the same. Thus, there are $3\times3=9$ cases of C/N value. In many cases, C/N means Total C/Total N, but in this case, the same value of C/N value does not always mean the same chemical and/or biochemical meaning if the combination of organic and inorganic components is different. Thus, C/N ratio must be used under the strict definition. Second, C/N ratio is not always the operating factor but only the result of the composting process. Thus, it is rather difficult for C/N data to obtain useful findings for good operation of a composting plant.

pH and Others

Since the appropriate range of pH for the growth of most microorganisms is around 6 to 8, pH in the reactor should be maintained in this range. However, the value of pH is not an operating parameter but a result of microbial activities with many kinds of biochemical reactions. For instance, the decomposition of nitrogen containing substances such as protein and amino acids generates ammonia, which leads to pH increase, whereas the decomposition of carbohydrate substances accelerates the production of organic acids such as acetic acid and lactic acid, which brings about pH decrease. Thus, the control of pH is not an easy task. Forced adjustment of pH using chemicals, acids and alkalis, is not always an effective way to maintain the stable condition in the reactor, and no adjustment would be better since the pH value would reach the appropriate range naturally if the decomposition process exceeds in a normal way. Thus, the adjustment of aeration or mixing to maintain the suitable range of temperature and moisture content in the reactor is more significant.

There are still many factors to be considered. For example, ORP in the reactor, bulking agent (rice husks or fine wood chips), garbage property, the use of recycled residue and its properties, accelerators for microbes, and so on. However, it is difficult to discuss many of them on the basis of engineering as of yet. But there is a proper result which showed the utility of ORP [5].

Figure 2: Time course of ORP value at different initial moisture content.

Left: 47.4%, Right: 66.5%

The parameter is the height from the bottom of the column (0.3 m to 1.5m).

Figure 2 shows an example of the time course of ORP value in the column filled with waste food and compost from the start to the day 5, during the period of time 1.2g-dry/L-column of waste food was fed every day, the only difference is the initial moisture content of 47.4% and 66.5%. In the case of 47.4% of initial moisture content, the ORP value was very stable and little difference in the height of the column (reactor), meaning that good condition for composting was kept in all part of the reactor. But in the case of 66.5% of initial moisture content, the ORP value changed largely and showed even minus value, which means the existence of anaerobic region. This was a bad symptom of the composting. These results showed that ORP is a good tool of monitoring the state of composting.

Analysis of the Microbial Community

Globally, immense research has focused on composting research for a long period. For instance, "The Practical Handbook of Compost Engineering" a 717-paged standard literature published in 1993, contains extensive information on composting from definition to odor management [6]. Nevertheless, there are still so many unknowns about composting, especially information about the behavior of the microbial community. This could be attributed to the complexity of the behavior of the microbial community. In order to break the deadlock, the author brought a key to analyze the complex behavior of the microbial community [7]. This study analyzed the relationship between a continuous operation garbage treatment system's microbial community and decomposition of organic matter and evaluated for effective microbes in the garbage treatment system. Although many research articles have been published on the composting processes throughout the world, most of them employ batch processes and not continuous processes. Conversely, most real-world practical composting plants adopt a continuous operation system in which fresh feed is usually input once a day with continuous aeration and intermittent mixing. To comprehensively analyze the microbial community, three different approaches were adopted in this study; 1) colony observation, 2) DNA analysis, and 3) the enzymatic activities of each colony. In short, the microbial composition and the number of the colonies seen on the medium plate changed every day and did not realize a "steady state." Thus, an extremely efficient microbe, which is a "super" microbe often found in commercial advertisement, does not exist. Only eleven microbes were isolated; yet many more microbes must exist in the system but were not counted due to a high dilution rate. From our DNA analysis, the PCR-DGGE profile of the microbial community in the garbage residue showed that bands of isolated colonies were detected in the same positions as the bands of garbage residue, which contained all kinds of microbes. Nine microbes were identified using 16S rRNA genome from eleven isolated ones. The identified microbes were of different bacterial species and their characteristics were examined from the stand point of nutritional property and enzymatic activity. The garbage decomposition process consists of two steps, solubilization and metabolization. Extracellular enzymes act during solubilization of solid garbage residue, and intracellular enzymes work when water-soluble substances are taken up into

bacterial cells and metabolized. Protease and amylase activity were measured to assess extracellular enzymatic activity and dehydrogenase activity was measured to evaluate intracellular enzymatic activity. The enzyme activities of bacterial strains significantly differed by strain, suggesting that these microorganisms complemented each other. This may provide information to help clarify why macroscopic parameters were very stable while microbial colonies were always changing. The author believes that this study's approach can help shed light on the "black box" of the composting process.

Conclusion

The major parameters for design and operation of large-scale microbial garbage-treating plants should be determined not by empirical basis but by the engineered approach shown in this study. However, the approach shown here was only an elementary stage of the operation design. In the next step, a simulation model will be developed in which the material balance of water/oxygen, heat balance, and the terms of bacterial activity will be included. And also, the performance of the composting plant will be able to be analyzed by the behavior of the bacterial community, i.e. from black box to clear box of the composting process.

References

- 1. Suzuki S (1984) Rural Refuse Composting Plant. Irrigation Eng. and Rural Planning 5: 48-5.
- 2. Matsuda S, Iwata R, Uhara Y (2012) Development of an Effective and Ecological Garbage Treating System. J. Advanced Res. in Physics 3: 1-6.
- 3. Kaneko H, Nakasaki K (2008) Current Trends and Prospects on Composting Technology Research. Waste Management Research 19: 264-270.
- 4. (2020) Japan Livestock Industry Association (Ed.), a design manual of livestock manure composting Facilities 246.
- 5. Akiyama D (2016) Design of Aeration Operation in Large Scale Composting Plant. Master's Thesis of Department of Applied Chemistry and Biochemical Engineering, Shizuoka University.
- 6. Haug RT (1993) The practical Handbook of Composting Engineering, Florida: Lewish Publishers 717.
- 7. Matsuda S, Suherman RS, Yanagihara A, Yamauchi T (2021) Characterization of the Microbial Community in A Continuous Garbage Treatment Process. Energy and Environment Research 11: 37-49.

Copyright: © 2025 Satoshi Matsuda. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.